The test case: flat Riemannian manifolds November 12, 2009
Posted by Akhil Mathew in differential geometry, MaBloWriMo.Tags: curvature tensor, flat manifolds, Riemannian metrics, test case
1 comment so far
Recall that two Riemannian manifolds are isometric if there exists a diffeomorphism
that preserves the metric on the tangent spaces. The curvature tensor (associated to the Levi-Civita connection) measures the deviation from flatness, where a manifold is flat if it is locally isometric to a neighborhood of
.
Theorem 1 (The Test Case) The Riemannian manifold
is locally isometric to
if and only if the curvature tensor vanishes. (more…)
Identities for the curvature tensor November 11, 2009
Posted by Akhil Mathew in differential geometry, MaBloWriMo.Tags: Bianchi identity, connections, curvature tensor, eponymy, Riemannian metrics
add a comment
It turns out that the curvature tensor associated to the connection from a Riemannian pseudo-metric has to satisfy certain conditions. (As usual, we denote by
the Levi-Civita connection associated to
, and we assume the ground manifold is smooth.)
First of all, we have skew-symmetry
This is immediate from the definition.
Next, we have another variant of skew-symmetry:
Proposition 1
(more…)
The fundamental theorem of Riemannian geometry and the Levi-Civita connection November 10, 2009
Posted by Akhil Mathew in differential geometry, MaBloWriMo.Tags: connections, Levi-Civita connection, Riemannian metrics
8 comments
Ok, now onto the Levi-Civita connection. Fix a manifold with the pseudo-metric
. This means essentially a metric, except that
as a bilinear form on the tangent spaces is still symmetric and nondegenerate but not necessarily positive definite. It is still possible to say that a pseudo-metric is compatible with a given connection.
This is the fundamental theorem of Riemannian geometry:
Theorem 1 There is a unique symmetric connection on
compatible with
. (more…)
Covariant derivatives and parallelism for tensors November 3, 2009
Posted by Akhil Mathew in differential geometry, MaBloWriMo.Tags: connections, covariant derivatives, parallelism, Riemannian metrics, tensors
3 comments
Time to continue the story for covariant derivatives and parallelism, and do what I promised yesterday on tensors.
Fix a smooth manifold with a connection
. Then parallel translation along a curve
beginning at
and ending at
leads to an isomorphism
, which depends smoothly on
. For any
, we get isomorphisms
depending smoothly on
. (Of course, given an isomorphism
of vector spaces, there is an isomorphism
sending
—the important thing is the inverse.) (more…)
Riemannian metrics and connections October 27, 2009
Posted by Akhil Mathew in differential geometry.Tags: Christoffel symbols, connections, Riemannian metrics
8 comments
Wow. Blogging is definitely way harder during the academic year.
Ok, so I’m aiming to change things around a bit here and take a break from algebraic number theory to do some differential geometry. I’ll assume basic familiarity with what manifolds are, the tangent bundle and its variants, but generally no more. I eventually want to get to some real theorems, but this post will focus primarily on definitions.
Riemannian Metrics
A Riemannian metric on a smooth manifold is defined as a covariant symmetric 2-tensor
such that
for all
. For convenience, I will write
for
. In other words, a Riemannian metric is a collection of (positive) inner products on each of the tangent spaces
such that if
are (smooth) vector fields, the function
defined by taking the inner product at each point, is smooth. There are several ways to get Riemannian metrics: (more…)