## Unramified extensionsOctober 20, 2009

Posted by Akhil Mathew in algebra, algebraic number theory, number theory.
Tags: , ,
1 comment so far

As is likely the case with many math bloggers, I’ve been looking quite a bit at MO and haven’t updated on some of the previous series in a while.

Back to ANT. Today, we tackle the case ${e=1}$. We workÂ in the local case where all our DVRs are complete, and all our residue fields are perfect (e.g. finite) (EDIT: I don’t think this works out in the non-local case). I’ll just state these assumptions at the outset. Then, unramified extensions can be described fairly explicitly. (more…)

## Why simple modules are often finite-dimensional IIJuly 22, 2009

Posted by Akhil Mathew in algebra, representation theory.
Tags: , , , ,
I had a post a few days back on why simple representations of algebras over a field ${k}$ which are finitely generated over their centers are always finite-dimensional, where I covered some of the basic ideas, without actually finishing the proof; that is the purpose of this post.
So, let’s review the notation: ${k}$ is our ground field, which we no longer assume algebraically closed (thanks to a comment in the previous post), ${A}$ is a ${k}$-algebra, ${Z}$ its center. We assume ${Z}$ is a finitely generated ring over ${k}$, so in particular Noetherian: each ideal of ${Z}$ is finitely generated.
Theorem 1 (Dixmier, Quillen) If ${A}$ is a finite ${Z}$-module, then any simple ${A}$-module is a finite-dimensional ${k}$-vector space.