jump to navigation

Hopf-Rinow II and an application November 15, 2009

Posted by Akhil Mathew in differential geometry, MaBloWriMo.
Tags: , , , ,

Now, let’s finish the proof of the Hopf-Rinow theorem (the first one) started yesterday. We need to show that given a Riemannian manifold {(M,g)} which is a metric space {d}, the existence of arbitrary geodesics from {p} implies that {M} is complete with respect to {d}. Actually, this is slightly stronger than what H-R states: geodesic completeness at one point {p} implies completeness.

The first thing to notice is that {\exp: T_p(M) \rightarrow M} is smooth by the global smoothness theorem and the assumption that arbitrary geodesics from {p} exist. Moreover, it is surjective by the second Hopf-Rinow theorem.

Now fix a {d}-Cauchy sequence {q_n \in M}. We will show that it converges. Draw minimal geodesics {\gamma_n} travelling at unit speed with

\displaystyle \gamma_n(0)=p, \quad \gamma_n( d(p,q_n)) = q_n.  (more…)