jump to navigation

Representations of sl2, Part II July 18, 2009

Posted by Akhil Mathew in algebra, representation theory.
Tags: , , , ,
1 comment so far

This post is the second in the series on {\mathfrak{sl}_2} and the third in the series on Lie algebras. I’m going to start where we left off yesterday on {\mathfrak{sl}_2}, and go straight from there to classification.  Basically, it’s linear algebra.

Classification

We’ve covered all the preliminaries now and we can classify the {\mathfrak{sl}_2}-representations, the really interesting material here. By Weyl’s theorem, we can restrict ourselves to irreducible representations. Fix an irreducible {V}.

So, we know that {H} acts diagonalizably on {V}, which means we can write

\displaystyle  V = \bigoplus_\lambda V_\lambda

where {Hv_\lambda = \lambda v_{\lambda}} for each {\lambda}, i.e. {V_\lambda} is the {H}-eigenspace.

(more…)