Completions of rings and modulesAugust 25, 2009

Posted by Akhil Mathew in algebra, commutative algebra.
Tags: , , , ,

So, we saw in the previous post that completion can be defined generally for abelian groups. Now, to specialize to rings and modules.

Rings

The case in which we are primarily interested comes from a ring ${A}$ with a descending filtration (satisfying ${A_0 =A}$), which implies the ${A_i}$ are ideals; as we saw, the completion will also be a ring. Most often, there will be an ideal ${I}$ such that ${A_i = I^i}$, i.e. the filtration is ${I}$-adic. We have a completion functor from filtered rings to rings, sending ${A \rightarrow \hat{A}}$. Given a filtered ${A}$-module ${M}$, there is a completion ${\hat{M}}$, which is also a ${\hat{A}}$-module; this gives a functor from filtered ${A}$-modules to ${\hat{A}}$-modules. (more…)

How to tell if a ring is NoetherianAugust 9, 2009

Posted by Akhil Mathew in algebra, commutative algebra.
Tags: , , , ,

I briefly outlined the definition and first properties of Noetherian rings and modules a while back.  There are several useful and well-known criteria to tell whether a ring is Noetherian, as I will discuss in this post.  Actually, I’ll only get to the first few basic ones here, though these alone give us a lot of tools for, say, algebraic geometry, when we want to show our schemes are relatively well-behaved.  But there are plenty more to go.

Hilbert’s basis theorem

It is the following:

Theorem 1 (Hilbert) Let ${A}$ be a Noetherian ring. Then the polynomial ring ${A[X]}$ is also Noetherian.

Why simple modules are often finite-dimensional, IJuly 19, 2009

Posted by Akhil Mathew in algebra.
Tags: , , , ,
Theorem 1 Let ${A}$ be an associative algebra with identity over an algebraically closed field ${k}$; suppose the center ${Z \subset A}$ is a finitely generated ring over ${k}$, and ${A}$ is a finitely generated ${Z}$-module. Then: all simple ${A}$-modules are finite-dimensional ${k}$-vector spaces.