## A prime ideal criterion for being NoetherianAugust 13, 2009

Posted by Akhil Mathew in algebra, commutative algebra.
Tags: , ,
1 comment so far

This post, the third in the mini-series so far, gives one more criterion for when a ring is Noetherian.  I also discuss how prime ideals tend to crop up in commutative algebra.

Why prime ideals are important

As discussed in the end of my previous post and in the comments, ideals satisfying some property and maximal with respect to it are often prime. To prove these results, we often use the following convenient notation:

Definition 1

If ${I,J}$ are ideals of a commutative ring ${A}$, then we define

## How to tell if a ring is NoetherianAugust 9, 2009

Posted by Akhil Mathew in algebra, commutative algebra.
Tags: , , , ,

I briefly outlined the definition and first properties of Noetherian rings and modules a while back.  There are several useful and well-known criteria to tell whether a ring is Noetherian, as I will discuss in this post.  Actually, I’ll only get to the first few basic ones here, though these alone give us a lot of tools for, say, algebraic geometry, when we want to show our schemes are relatively well-behaved.  But there are plenty more to go.

Hilbert’s basis theorem

It is the following:

Theorem 1 (Hilbert) Let ${A}$ be a Noetherian ring. Then the polynomial ring ${A[X]}$ is also Noetherian.

## Generic freeness IIJuly 30, 2009

Posted by Akhil Mathew in algebra, commutative algebra.
Tags: , , ,

Today’s goal is to partially finish the proof of the generic freeness lemma; the more general case, with finitely generated algebras, will have to wait for a later time though.

Recall that our goal was the following:

Theorem 1 Let ${A}$ be a Noetherian integral domain, ${M}$ a finitely generated ${A}$-module. Then there there exists ${f \in A - \{0\}}$ with ${M_f}$ a free ${A_f}$-module.

## Generic freeness IJuly 29, 2009

Posted by Akhil Mathew in algebra, commutative algebra.
Tags: , , , , ,
As I have already mentioned, a ring is Noetherian if each ideal of ${A}$ is finitely generated. Similarly, a module is Noetherian if every submodule is finitely generated. I will summarize the basic facts below briefly.